Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Nucl Med Biol ; 132-133: 108906, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38518400

RESUMO

BACKGROUND: The C-X-C chemokine receptor type 4 (CXCR4) is overexpressed in many cancers, e.g. multiple myeloma and acute leukemia, yet solely [68Ga]PentixaFor is used for clinical PET imaging. The aim of this study was to develop and assess a second generation Al18F-labeled D-amino acid peptide based on the viral macrophage inflammatory protein II for CXCR4 targeted molecular imaging. METHODS: We designed a library of monomer and multimer constructs and evaluated their binding affinity for human and mouse CXCR4. Based on these results, we selected the best vector molecule for development of an Al18F-labeled ligand, [18F]AlF-NOTA-2xDV1(c11sc12s), which was further evaluated in a cell-based binding assay to assess its binding properties and specificity for CXCR4. Next, pharmacokinetics and tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) were evaluated in naïve mice and mice with xenografts derived from U87.CXCR4 cells. Finally, we performed an imaging study in a non-human primate to assess the in vivo distribution of this novel radioligand in a species closely related to humans. RESULTS: The lead ligand AlF-NOTA-2xDV1(c11sc12s) showed six-fold higher affinity for human CXCR4 compared to Ga-Pentixafor. The corresponding radiotracer was obtained in a good radiochemical yield of 40.1 ± 13.5 % (n = 4) and apparent molar activity of 20.4 ± 3.3 MBq/nmol (n = 4) after optimization. In U87.CD4.CXCR4 cell binding assays, the total bound fraction of [18F]AlF-NOTA-(2×)DV1(c11sc12s) was 32.4 ± 1.8 %. This fraction could be reduced by 82.5 % in the presence of 75 µM AMD3100. In naïve mice, [18F]AlF-NOTA-2xDV1(c11sc12s) accumulated in organs expressing mouse CXCR4, e.g. the liver (SUVmean (mean standardized uptake value) 75 min p.i. 11.7 ± 0.6), which was blockable by co-injecting AMD3100 (5 mg/kg). In U87.CXCR4 xenografted tumor mice, the tumor uptake of [18F]AlF-NOTA-2xDV1(c11sc12s) remained low (SUVmean 0.5 ± 0.1), but was reduced by co-administration of AMD3100. Surprisingly, [18F]AlF-NOTA-2xDV1(c11sc12s) exhibited a similar biodistribution in a non-human primate as in mice indicating off-target binding of [18F]AlF-NOTA-2xDV1(c11sc12s) in liver tissue. We confirmed that [18F]AlF-NOTA-2xDV1(c11sc12s) is taken up by hepatocytes using in vitro studies and that the uptake can be blocked with AMD3100 and rifampicin, a potent organic anion-transporting-polypeptide (OATP)1B1 and OATP1B3 inhibitor. CONCLUSION: The second generation D-peptide AlF-NOTA-2xDV1(c11sc12s) showed high affinity for human CXCR4 and the corresponding radiotracer was produced in good radiochemical yields. However, [18F]AlF-NOTA-2xDV1(c11sc12s) is not specific for CXCR4 and is also a substrate for OATP1B1 and/or OATP1B3, known to mediate hepatic uptake. Therefore, D-amino acid peptides, based on the viral macrophage inflammatory protein II, are not the prefered vector molecule for the development of CXCR4 targeting molecular imaging tools.

2.
Org Biomol Chem ; 22(15): 3059-3067, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38545887

RESUMO

This article presents the controlled synthesis of a rare example of C,C'-linked bis-cyclam architecture in mild conditions through the "bis-aminal" route previously used for the advantageous synthesis of cyclam, N- and C-functional cyclams and N,N'-bis-cyclams. Two synthetic pathways were explored with the smart design of α,ß-unsaturated ketones or alkyl halides bis-cyclizing agents. The first led to the isolation of a key intermediate for the future design of N-functionalized bis-cyclams, whereas the second allowed the preparation of the targeted C,C'-xylylene-bis-cyclam under mild conditions with decent yield. This compound was then studied as a CXCR4 receptor inhibitor, one of the main applications known for bis-macrocyclic compounds, in particular in the context of HIV (human immunodeficiency virus) infection. Although results demonstrated that its potency is lower (i.e. 137-fold higher IC50) than the gold standard AMD3100 against HIV infection, clear evidence of CXCR4 inhibition is presented, confirming the potential of this novel architecture and related compounds in this research field.


Assuntos
Infecções por HIV , Compostos Heterocíclicos , Humanos , Receptores CXCR4/metabolismo , Compostos Heterocíclicos/farmacologia , Transdução de Sinais , Benzilaminas/farmacologia
3.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474466

RESUMO

Disubstituted isothiazolo[4,3-b]pyridines are known inhibitors of cyclin G-associated kinase. Since 3-substituted-7-aryl-isothiazolo[4,3-b]pyridines remain elusive, a strategy was established to prepare this chemotype, starting from 2,4-dichloro-3-nitropyridine. Selective C-4 arylation using ligand-free Suzuki-Miyaura coupling and palladium-catalyzed aminocarbonylation functioned as key steps in the synthesis. The 3-N-morpholinyl-7-(3,4-dimethoxyphenyl)-isothiazolo[4,3-b]pyridine was completely devoid of GAK affinity, in contrast to its 3,5- and 3,6-disubstituted congeners. Molecular modeling was applied to rationalize its inactivity as a GAK ligand.


Assuntos
Paládio , Piridinas , Piridinas/farmacologia , Modelos Moleculares , Ligantes , Ciclina G , Catálise
4.
Dalton Trans ; 53(12): 5616-5623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38439632

RESUMO

The chemokine receptor CXCR4 is implicated in multiple diseases including inflammatory disorders, cancer growth and metastasis, and HIV/AIDS. CXCR4 targeting has been evaluated in treating cancer metastasis and therapy resistance. Cyclam derivatives, most notably AMD3100 (Plerixafor™), are a common motif in small molecule CXCR4 antagonists. However, AMD3100 has not been shown to be effective in cancer treatment as an individual agent. Configurational restriction and transition metal complex formation increases receptor binding affinity and residence time. In the present study, we have synthesized novel trans-IV locked cyclam-based CXCR4 inhibitors, a previously unexploited configuration, and demonstrated their higher affinity for CXCR4 binding and CXCL12-mediated signaling inhibition compared to AMD3100. These results pave the way for even more potent CXCR4 inhibitors that may provide significant efficacy in cancer therapy.


Assuntos
Complexos de Coordenação , Ciclamos , Compostos Heterocíclicos , Benzilaminas , Complexos de Coordenação/farmacologia , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Receptores CXCR4/antagonistas & inibidores
5.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534251

RESUMO

The human CC chemokine receptor 7 (CCR7) is activated by two natural ligands, CC chemokine ligand 19 (CCL19) and 21 (CCL21). The CCL19-CCL21-CCR7 axis has been extensively studied in vitro, but there is still debate over whether CCL21 is an overall weaker agonist or if the axis displays biased signalling. In this study, we performed a systematic analysis at the transducer level using NanoBRET-based methodologies in three commonly used cellular backgrounds to evaluate pathway and ligand preferences, as well as ligand bias and the influence of the cellular system thereon. We found that both CCL19 and CCL21 activated all cognate G proteins and some non-cognate couplings in a cell-type-dependent manner. Both ligands recruited ß-arrestin1 and 2, but the potency was strongly dependent on the cellular system. Overall, CCL19 and CCL21 showed largely conserved pathway preferences, but small differences were detected. However, these differences only consolidated in a weak ligand bias. Together, these data suggest that CCL19 and CCL21 share mostly overlapping, weakly biased, transducer profiles, which can be influenced by the cellular context.


Assuntos
Transdução de Sinais , Humanos , Receptores CCR7/metabolismo , Ligantes
6.
Cell Commun Signal ; 22(1): 94, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308278

RESUMO

BACKGROUND: Interferon-γ-inducible protein of 10 kDa (IP-10/CXCL10) is a dual-function CXC chemokine that coordinates chemotaxis of activated T cells and natural killer (NK) cells via interaction with its G protein-coupled receptor (GPCR), CXC chemokine receptor 3 (CXCR3). As a consequence of natural posttranslational modifications, human CXCL10 exhibits a high degree of structural and functional heterogeneity. However, the biological effect of natural posttranslational processing of CXCL10 at the carboxy (C)-terminus has remained partially elusive. We studied CXCL10(1-73), lacking the four endmost C-terminal amino acids, which was previously identified in supernatant of cultured human fibroblasts and keratinocytes. METHODS: Relative levels of CXCL10(1-73) and intact CXCL10(1-77) were determined in synovial fluids of patients with rheumatoid arthritis (RA) through tandem mass spectrometry. The production of CXCL10(1-73) was optimized through Fmoc-based solid phase peptide synthesis (SPPS) and a strategy to efficiently generate human CXCL10 proteoforms was introduced. CXCL10(1-73) was compared to intact CXCL10(1-77) using surface plasmon resonance for glycosaminoglycan (GAG) binding affinity, assays for cell migration, second messenger signaling downstream of CXCR3, and flow cytometry of CHO cells and primary human T lymphocytes and endothelial cells. Leukocyte recruitment in vivo upon intraperitoneal injection of CXCL10(1-73) was also evaluated. RESULTS: Natural CXCL10(1-73) was more abundantly present compared to intact CXCL10(1-77) in synovial fluids of patients with RA. CXCL10(1-73) had diminished affinity for GAG including heparin, heparan sulfate and chondroitin sulfate A. Moreover, CXCL10(1-73) exhibited an attenuated capacity to induce CXCR3A-mediated signaling, as evidenced in calcium mobilization assays and through quantification of phosphorylated extracellular signal-regulated kinase-1/2 (ERK1/2) and protein kinase B/Akt. Furthermore, CXCL10(1-73) incited significantly less primary human T lymphocyte chemotaxis in vitro and peritoneal ingress of CXCR3+ T lymphocytes in mice. In contrast, loss of the four endmost C-terminal residues did not affect the inhibitory properties of CXCL10 on migration, proliferation, wound closure, phosphorylation of ERK1/2, and sprouting of human microvascular endothelial cells. CONCLUSION: Our study shows that the C-terminal residues Lys74-Pro77 of CXCL10 are important for GAG binding, signaling through CXCR3A, T lymphocyte chemotaxis, but dispensable for angiostasis.


Assuntos
Quimiocina CXCL10 , Quimiotaxia , Glicosaminoglicanos , Animais , Cricetinae , Humanos , Camundongos , Quimiocina CXCL10/metabolismo , Cricetulus , Células Endoteliais/metabolismo , Heparina/metabolismo , Linfócitos T/metabolismo , Glicosaminoglicanos/metabolismo
7.
Bioorg Chem ; 145: 107181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354503

RESUMO

The human CC chemokine receptor 8 (CCR8) has been extensively pursued as target for the treatment of various inflammatory disorders. More recently, the importance of CCR8 in the tumor microenvironment has been demonstrated, spurring the interest in CCR8 antagonism as therapeutic strategy in immuno-oncology. On a previously described naphthalene sulfonamide with CCR8 antagonistic properties, the concept of isosterism was applied, leading to the discovery of novel CCR8 antagonists with IC50 values in the nM range in both the CCL1 competition binding and CCR8 calcium mobilization assay. The excellent CCR8 antagonistic activity of the most potent congeners was rationalized by homology molecular modeling.


Assuntos
Quimiocinas CC , Receptores de Quimiocinas , Humanos , Quimiocinas CC/metabolismo , Quimiocina CCL1/metabolismo , Receptores de Quimiocinas/química , Receptores de Quimiocinas/metabolismo , Amidas , Receptores CCR8 , Sulfonamidas/farmacologia , Naftalenos/farmacologia
8.
J Med Chem ; 67(4): 2864-2883, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345794

RESUMO

We report on the synthesis and characterization of three types of nucleoside tetraphosphate derivatives 4-9 acting as potential prodrugs of d4T nucleotides: (i) the δ-phosph(on)ate is modified by two hydrolytically stable alkyl residues 4 and 5; (ii) the δ-phosph(on)ate is esterified covalently by one biodegradable acyloxybenzyl moiety and a nonbioreversible moiety 6 and 7; or (iii) the δ-phosphate of nucleoside tetraphosphate is masked by two biodegradable prodrug groups 8 and 9. We were able to prove the efficient release of d4T triphosphate (d4TTP, (i)), δ-monoalkylated d4T tetraphosphates (20 and 24, (ii)), and d4T tetraphosphate (d4T4P, (iii)), respectively, by chemical or enzymatic processes. Surprisingly, δ-dialkylated d4T tetraphosphates, δ-monoalkylated d4T tetraphosphates, and d4T4P were substrates for HIV-RT. Remarkably, the antiviral activity of TetraPPPPro-prodrug 7 was improved by 7700-fold (SI 5700) as compared to the parent d4T in CEM/TK- cells, denoting a successful cell membrane passage of these lipophilic prodrugs and an intracellular delivery of the nucleotide metabolites.


Assuntos
Fármacos Anti-HIV , HIV-1 , Pró-Fármacos , Fármacos Anti-HIV/química , Nucleosídeos/química , Estavudina , HIV-1/metabolismo , Nucleotídeos/farmacologia , Pró-Fármacos/química
9.
Cell Commun Signal ; 22(1): 43, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233929

RESUMO

BACKGROUND: The human CXC chemokine receptor 2 (CXCR2) is a G protein-coupled receptor (GPCR) interacting with multiple chemokines (i.e., CXC chemokine ligands CXCL1-3 and CXCL5-8). It is involved in inflammatory diseases as well as cancer. Consequently, much effort is put into the identification of CXCR2 targeting drugs. Fundamental research regarding CXCR2 signaling is mainly focused on CXCL8 (IL-8), which is the first and best described high-affinity ligand for CXCR2. Much less is known about CXCR2 activation induced by other chemokines and it remains to be determined to what extent potential ligand bias exists within this signaling system. This insight might be important to unlock new opportunities in therapeutic targeting of CXCR2. METHODS: Ligand binding was determined in a competition binding assay using labeled CXCL8. Activation of the ELR + chemokine-induced CXCR2 signaling pathways, including G protein activation, ß-arrestin1/2 recruitment, and receptor internalization, were quantified using NanoBRET-based techniques. Ligand bias within and between these pathways was subsequently investigated by ligand bias calculations, with CXCL8 as the reference CXCR2 ligand. Statistical significance was tested through a one-way ANOVA followed by Dunnett's multiple comparisons test. RESULTS: All chemokines (CXCL1-3 and CXCL5-8) were able to displace CXCL8 from CXCR2 with high affinity and activated the same panel of G protein subtypes (Gαi1, Gαi2, Gαi3, GαoA, GαoB, and Gα15) without any statistically significant ligand bias towards any one type of G protein. Compared to CXCL8, all other chemokines were less potent in ß-arrestin1 and -2 recruitment and receptor internalization while equivalently activating G proteins, indicating a G protein activation bias for CXCL1,-2,-3,-5,-6 and CXCL7. Lastly, with CXCL8 used as reference ligand, CXCL2 and CXCL6 showed ligand bias towards ß-arrestin1/2 recruitment compared to receptor internalization. CONCLUSION: This study presents an in-depth analysis of signaling bias upon CXCR2 stimulation by its chemokine ligands. Using CXCL8 as a reference ligand for bias index calculations, no ligand bias was observed between chemokines with respect to activation of separate G proteins subtypes or recruitment of ß-arrestin1/2 subtypes, respectively. However, compared to ß-arrestin recruitment and receptor internalization, CXCL1-3 and CXCL5-7 were biased towards G protein activation when CXCL8 was used as reference ligand.


Assuntos
Quimiocinas , Receptores de Interleucina-8B , Humanos , Receptores de Interleucina-8B/metabolismo , beta-Arrestinas/metabolismo , Ligantes , Quimiocinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo
10.
Cancer Immunol Immunother ; 73(1): 11, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231448

RESUMO

The human CC chemokine receptor 8 (CCR8) is specifically expressed on tumor-infiltrating regulatory T cells (TITRs) and is a promising drug target for cancer immunotherapy. However, the role of CCR8 signaling in TITR biology and the effectiveness of CCR8 small molecule antagonists as TITR-targeting immunotherapy remain subjects of ongoing debate. In this work, we generated a novel cellular model of TITRs by culturing peripheral blood mononuclear cell-derived regulatory T cells in medium containing tumor cell-conditioned medium, CD3/CD28 activator, interleukin-2 and 1α,25-dihydroxyvitamin D3. This cellular model (named TITR mimics) highly and stably expressed a series of TITR signature molecules, including CCR8, FOXP3, CD30, CD39, CD134, CD137, TIGIT and Tim-3. Moreover, TITR mimics displayed robust in vitro immunosuppressive activity. To unravel the functional role of CCR8 in TITR mimics, a chemotaxis assay was performed showing strong and CCR8-specific migration toward CCL1, the natural chemokine agonist of CCR8. However, either stimulation (with CCL1) or blocking (with the small molecule antagonist NS-15) of CCR8 signaling did not affect the immunosuppressive activity, proliferation and survival of TITR mimics. Collectively, our work provides a method for the generation of TITR mimics in vitro, which can be used to study TITR biology and to evaluate drug candidates targeting TITRs. Furthermore, our findings suggest that CCR8 signaling primarily regulates migration of these cells.


Assuntos
Leucócitos Mononucleares , Neoplasias , Humanos , Receptores CCR8 , Linfócitos T Reguladores , Meios de Cultivo Condicionados
11.
Eur J Med Chem ; 265: 116103, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38176358

RESUMO

In our pursuit of developing novel analogs of anthracyclines with enhanced antitumor efficacy and safety, we have designed a synthesis scheme for 4,11-dihydroxy-5,10-dioxocyclopenta[b]anthracene-2-carboxamides. These newly synthesized compounds exhibit remarkable antiproliferative potency against various mammalian tumor cell lines, including those expressing activated mechanisms of multidrug resistance. The structure of the diamine moiety in the carboxamide side chain emerges as a critical determinant for anticancer activity and interaction with key targets such as DNA, topoisomerase 1, and ROS induction. Notably, the introduced modification to the doxorubicin structure results in significantly increased lipophilicity, cellular uptake, and preferential distribution in lysosomes. Consequently, while maintaining an impact on anthracyclines targets, these novel derivatives also demonstrate the potential to induce cytotoxicity through pathways associated with lysosomes. In summary, derivatives of cyclic diamines, particularly 3-aminopyrrolidine, can be considered a superior choice compared to aminosugars for incorporation into natural and semi-synthetic anthracyclines or new anthraquinone derivatives, aiming to circumvent efflux-mediated drug resistance.


Assuntos
Antineoplásicos , Animais , Antineoplásicos/química , Antraquinonas/química , Ciclopentanos , Ensaios de Seleção de Medicamentos Antitumorais , Antibióticos Antineoplásicos/farmacologia , Antraciclinas , Inibidores da Topoisomerase II/farmacologia , Relação Estrutura-Atividade , Mamíferos/metabolismo
12.
Eur J Med Chem ; 264: 116020, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086193

RESUMO

The development of new antiviral agents such as nucleoside analogues or acyclic nucleotide analogues (ANPs) and prodrugs thereof is an ongoing task. We report on the synthesis of three types of lipophilic triphosphate analogues of (R)-PMPA and dialkylated diphosphate analogues of (R)-PMPA. A highly selective release of the different nucleotide analogues ((R)-PMPA-DP, (R)-PMPA-MP, and (R)-PMPA) from these compounds was achieved. All dialkylated (R)-PMPA-prodrugs proved to be very stable in PBS as well as in CEM/0 cell extracts and human plasma. In primer extension assays, both the monoalkylated and the dialkylated (R)-PMPA-DP derivatives acted as (R)-PMPA-DP as a substrate for HIV-RT. In contrast, no incorporation events were observed using human polymerase γ. The dialkylated (R)-PMPA-compounds exhibited significant anti-HIV efficacy in HIV-1/2 infected cells (CEM/0 and CEM/TK-). Remarkably, the dialkylated (R)-PMPA-MP derivative 9a showed a 326-fold improved activity as compared to (R)-PMPA in HIV-2 infected CEM/TK- cells as well as a very high SI of 14,000. We are convinced that this study may significantly contribute to advancing antiviral agents developed based on nucleotide analogues in the future.


Assuntos
Fármacos Anti-HIV , Organofosfonatos , Pró-Fármacos , Humanos , Tenofovir/farmacologia , Fármacos Anti-HIV/química , Organofosfonatos/química , Adenina , HIV-2 , Nucleotídeos , Pró-Fármacos/química
13.
Molecules ; 28(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067641

RESUMO

Sixteen new 2-substituted quinazolines were synthesized using a straightforward methodology starting from 2-methoxybezoic acid or 3-methoxy-2-naphthoic acid. The anti-proliferative activity of the target compounds was evaluated against nine cancer cell lines. Additionally, all the compounds were screened for their potency and selectivity against a panel of 109 kinases and four bromodomains, using Differential Scanning Fluorimetry (DSF). Compound 17 bearing a 2-methoxyphenyl substitution along with a basic side chain displayed a remarkable profile against the majority of the tested cell lines.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Quinazolinas/farmacologia , Linhagem Celular , Relação Estrutura-Atividade , Antineoplásicos/farmacologia
14.
Adv Sci (Weinh) ; 10(36): e2306021, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884485

RESUMO

Nucleoside analogs require three phosphorylation steps catalyzed by cellular kinases to give their triphosphorylated metabolites. Herein, the synthesis of two types of triphosphate prodrugs of different nucleoside analogs is disclosed. Triphosphates comprising: i) a γ-phosphate or γ-phosphonate bearing a bioreversible acyloxybenzyl group and a long alkyl group and ii) γ-dialkyl phosphate/phosphonate modified nucleoside triphosphate analogs. Almost selective conversion of the former TriPPPro-compounds into the corresponding γ-alkylated nucleoside triphosphate derivatives is demonstrated in CEM/0 cell extracts that proved to be stable toward further hydrolysis. The latter γ-dialkylated triphosphate derivatives lead to the slow formation of the corresponding NDPs. Both types of TriPPPro-compounds are highly potent in wild-type CEM/0 cells and more importantly, they exhibit even better activities against HIV-2 replication in CEM/TK- cell cultures. A finding of major importance is that, in primer extension assays, γ-phosphate-modified-NTPs, γ-mono-alkylated-triphosphates, and NDPs prove to be substrates for HIV-RT but not for cellular DNA-polymerases α,γ.


Assuntos
Fármacos Anti-HIV , HIV-1 , Organofosfonatos , Pró-Fármacos , Nucleosídeos/farmacologia , Nucleosídeos/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , HIV-1/metabolismo , Polifosfatos/farmacologia , Polifosfatos/química
15.
Chem Commun (Camb) ; 59(82): 12290-12293, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37752884

RESUMO

The naturally scarce eupholathone-type euphornin E (1) was efficiently prepared from abundant lathyrane-type Euphorbia factor L1via a visible-light-induced Sc(OTf)3-catalyzed tandem process. Eupholathones 2 and 3 were also smoothly obtained by changing the reaction solvent. This route provides a convenient method for easily constructing scarce eupholathone- from lathyrane-type Euphorbia diterpenes, and confirms the biogenetic relationship between them from a chemical standpoint. Notably, compound 1 exhibited good anti-HIV activity.


Assuntos
Diterpenos , Euphorbia , Euphorbia/química , Escândio , Biomimética , Diterpenos/farmacologia , Diterpenos/química , Esqueleto , Catálise , Estrutura Molecular
16.
Biosensors (Basel) ; 13(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37622853

RESUMO

Despite G protein-coupled receptors (GPCRs) being important theapeutic targets, the signaling properties of many GPCRs remain poorly characterized. GPCR activation primarily initiates heterotrimeric G protein signaling. To detect ligand-induced G protein activation, Bioluminescence Resonance Energy Transfer (BRET)-based biosensors were previously developed. Here, we designed a novel set of Nanoluciferase (NLuc) BRET-based biosensors (REGA-SIGN) that covers all Gα protein families (i.e., Gαi/o, GαSs/L, Gα12/13 and Gαq/15). REGA-SIGN uses NLuc as a bioluminescent donor and LSS-mKATE2, a red-shifted fluorophore, as an acceptor. Due to the enhanced spectral separation between donor and acceptor emission and the availability of a stable substrate for NLuc, this donor-acceptor pair enables sensitive kinetic assessment of G protein activity. After optimization, the NLuc integration sites into the Gα subunit largely corresponded with previously reported integration sites, except for GαSs/L for which we describe an alternative NLuc insertion site. G protein rescue experiments validated the biological activity of these Gα donor proteins. Direct comparison between EGFP and LSS-mKATE2 as acceptor fluorophores revealed improved sensitivity for nearly all G protein subtypes when using the latter one. Hence, REGA-SIGN can be used as a panel of kinetic G protein biosensors with high sensitivity.


Assuntos
Proteínas de Ligação ao GTP , Transdução de Sinais , Transferência de Energia , Corantes Fluorescentes , Ionóforos
17.
J Med Chem ; 66(17): 12163-12184, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37647547

RESUMO

We report on the synthesis and evaluation of three different nucleotide prodrug systems: (i) nucleoside triphosphate analogues in which the γ-phosph(on)ate has two different lipophilic nonbioreversible alkyl residues with d4TDP as the released nucleotide analogue; (ii) nucleoside diphosphate analogues bearing a bioreversible and a stable ß-alkyl group; or (iii) nucleoside diphosphate analogues bearing two nonhydrolysable lipophilic alkyl moieties. The delivery of d4TDP (for the triphosphate precursor) and d4TMP (for the diphosphate precursor) was demonstrated in CD4+ T-lymphocyte CEM cell extracts as well as in phosphate buffer saline (PBS). In primer extension assay, we found that γ-dialkylated d4TTP derivatives and d4TDP were accepted as substrates by HIV-RT. Several of these compounds were observed to be extremely active against HIV-1/2 replication in HIV-infected cells. A more than 45,000-fold increase in the anti-HIV activity was detected for compound 18a as compared to the parent d4T which results in a selectivity index value of 37,000.


Assuntos
Difosfatos , Nucleosídeos , Polifosfatos , Nucleotídeos/farmacologia
18.
Bioorg Chem ; 139: 106755, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544272

RESUMO

CCR8 agonists hold promise for the treatment of various auto-immune diseases. Despite the fact that phenoxybenzylpiperazine derivatives are known to be endowed with CCR8 agonistic activity, systematic structure-activity relationship studies have not been reported. In this study, ZK756326, a previously disclosed CCR8 agonist, was divided in various fragments and each subunit was subjected to structural modifications. All newly synthesized analogues were evaluated in a CCR8 calcium mobilization assay, revealing that only limited structural variation was tolerated in both phenyl rings and at the benzylic position. In contrast, various linkers gave analogues with good CCR8 agonistic potency. In addition, the presence of small substituents on the piperazinyl moiety or the exchange of the piperazinyl for a piperidinyl group afforded compounds with promising CCR8 agonism, with the most potent congener being 10-fold more potent than ZK756326.


Assuntos
Receptores CCR8 , Transdução de Sinais , Relação Estrutura-Atividade , Receptores CCR8/antagonistas & inibidores
19.
Antiviral Res ; 217: 105700, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562608

RESUMO

Here, we report on the anti-SARS-CoV-2 activity of PRO-2000, a sulfonated polyanionic compound. In Vero cells infected with the Wuhan, alpha, beta, delta or omicron variant, PRO-2000 displayed EC50 values of 1.1 µM, 2.4 µM, 1.3 µM, 2.1 µM and 0.11 µM, respectively, and an average selectivity index (i.e. ratio of cytotoxic versus antiviral concentration) of 172. Its anti-SARS-CoV-2 activity was confirmed by virus yield assays in Vero cells, Caco2 cells and A549 cells overexpressing ACE2 and TMPRSS2 (A549-AT). Using pseudoviruses bearing the SARS-CoV-2 spike (S), PRO-2000 was shown to block the S-mediated pseudovirus entry in Vero cells and A549-AT cells, with EC50 values of 0.091 µM and 1.6 µM, respectively. This entry process is initiated by interaction of the S glycoprotein with angiotensin-converting enzyme 2 (ACE2) and heparan sulfate proteoglycans. Surface Plasmon Resonance (SPR) studies showed that PRO-2000 binds to the receptor-binding domain (RBD) of S with a KD of 1.6 nM. Similar KD values (range: 1.2 nM-2.1 nM) were obtained with the RBDs of the alpha, beta, delta and omicron variants. In an SPR neutralization assay, PRO-2000 had no effect on the interaction between the RBD and ACE2. Instead, PRO-2000 was proven to inhibit binding of the RBD to a heparin-coated sensor chip, yielding an IC50 of 1.1 nM. To conclude, PRO-2000 has the potential to inhibit a broad range of SARS-CoV-2 variants by blocking the heparin-binding site on the S protein.


Assuntos
Antivirais , COVID-19 , Chlorocebus aethiops , Animais , Humanos , Antivirais/farmacologia , Enzima de Conversão de Angiotensina 2 , Células CACO-2 , Células Vero , SARS-CoV-2 , Ligação Proteica , Glicoproteína da Espícula de Coronavírus
20.
Comput Biol Chem ; 106: 107910, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37422940

RESUMO

A novel series of pyrimidine derivatives, bearing modified benzimidazoles at N-1 position, has been designed, synthesized and screened as NNRTIs against HIV and as broad-spectrum antiviral agents. The molecules were screened against different HIV targets using molecular docking experiment. The docking results indicated that the molecules interacted well with the residues Lys101, Tyr181, Tyr188, Trp229, Phe227 and Tyr318 present in NNIBP of HIV-RT protein, formed quite stable complexes and, thus, behaved as probable NNRTIs. Among these compounds, 2b and 4b showed anti-HIV activity with IC50 values as 6.65 µg/mL (SI = 15.50) and 15.82 µg/mL (SI = 14.26), respectively. Similarly, compound 1a showed inhibitory property against coxsackie virus B4 and compound 3b against different viruses. Molecular dynamics simulation results unequivocally demonstrated the higher stability of the complex HIV-RT:2b than the HIV-RT:nevirapine complex. The MM/PBSA-based binding free energy (-) 114.92 kJ/mol of HIV-RT:2b complex in comparison to that of HIV-RT:nevirapine complex (-) 88.33 kJ/mol, further demonstrated the higher binding strength of 2b and thus, established the potential of compound 2b as a lead molecule as an HIV-RT inhibitor.


Assuntos
Antivirais , HIV-1 , Antivirais/farmacologia , Pirimidinas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores da Transcriptase Reversa/farmacologia , HIV-1/genética , Nevirapina , Relação Estrutura-Atividade , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...